MI Extraction Studies

John A. Johnstone

Special thanks to Denton & Peter!

(very little, if any, thanks to John & Leo)

Extraction Techniques & Study Plan

In both historical & alternative extraction techniques, harmonic (53rd) quad circuits are ramped to establish phase space orientation at the septum wires

Historical

Q53 circuits are ramped to drag the stop-band through the beam

Alternative

Oth harmonic quads ramp the beam through the stop-band

Analytic modeling & simulations predict that the "historical" approach is completely inappropriate with large tune spreads.

Studies

- benchmark the 2 techniques at 120 GeV/c with nominal beam parameters
- compare losses with large (linear) tune spreads at 120 GeV, and then move on to 8 GeV.

[†] John Johnstone, An Alternative Approach to ½ Integer Extraction Using a Supplementary 0th-Harmonic Quadrupole Circuit, Mu2e-doc-576.

Slow Spill Established April 30th, 2010

1 sec slow spill established with QC206 ramped + QXR regulation

QC206 ramped & QXR off –
No spill was possible without
QXR

Quadratic Tune Shifts & MI Stop-band Correction

Dots = Measured Solid = **Predicted**

Phase Space at Q520

Dots = Measured Solid = **Predicted**

Latest Extraction Attempt – July 7th, 2010

Despite the excellent agreement between the predicted & measured behavior of tunes & phase space with 53rd-harmonic quad momentum bumps ...

Neither the magnitude nor polarity of the 53rd-harmonic extraction quads' fields during the time bump has had <u>any</u> impact on beam spill.

When this conundrum is resolved, studies will proceed to examining extraction with large tune spreads at 120 & 8 GeV

